

MACHINE TOOL SPINDLE

Machine tool spindles influence the productivitythe product quality the holding time

of a machine tool.

DIGITALISIERTE SPINDEL – SMI24

- Analogue interface for the transmission of
 - Encoder Signal
 - Toll clamping status
 - Motor temperature

Signal conversion analogue to digital directly at the spindle. \rightarrow Drive Cliq

SPINDLE SENSOR MODULE SMI24 - DIGITIZED SPINDLE SPINDLE SINAMICS - SINUMERIK – ONE SYSTEM

Feature

Reduction of hardware like SMC / TME / I/O module / cable

Benefit

Saving space and weight in electric cabinet and in cable drag chain and reducce commission time.

With SMI24 some electronic parts are not necessary in the cabinet

SPINDLE SENSOR MODULE SMI24 - DIGITIZED SPINDLE SPINDLE SINAMICS - SINUMERIK – ONE SYSTEM

Feature

Usability for 840D sl SW 4.5 SP3 and for 828D SW4.7 SP1

Benefit

Less installation time and easy start up for spindles with SMI24.

SMI24 makes the commissioning of spindles so easy like motors with DQ

SPINDLE SENSOR MODULE SMI24 - DIGITIZED SPINDLE SPINDLE SINAMICS - SINUMERIK – ONE SYSTEM

Feature

Digital signal transfer between spindle and SINAMICS and SINUMERIK.

Benefit

Most fast signal transfer. Assured reduction for chip to chip time up to 50 micron seconds.

SMI24 improves productivity because of top signal transfer time

DIGITIZED SPINDLE INTEGRATED SPINDLE MONITOR ISM

Feature

Integrated Spindle Monitor ISM

Benefit

Additional information about spindle data gives a feedback refer to spindle condition.

WEISS Spindeltechnologie GmbH – A Siemens Company

www.weissgmbh.com | Folie-Nr. 7

DIGITIZED SPINDLE CONNECTION WITH AN OPEN IT OPERATING SYSTEM

Feature / Function

- Dashboard displays the information on the master data of the connected main spindle
- Statistics for operating points: speed / torque / temperature
- Statistics on tool clamping times
- Statistics on the clamping condition
- Selection and comparison of statistical data at different points in time
- Export of saved data in a standard CSV format

Benefit

- Time-efficient access to required information in case of maintenance or service
- Information on possible power reserves and suitability of the design
- Evaluation of the clamping times in comparison to the reference value
- Detection of wear of the clamping system through change of the clamping times
- Recognition of changes in use
- Management and monitoring of globally distributed machine parks
- New service methods and business models

Further Information: https://documentation.mindsphere.io/resources/html/manage-my-machine/de-DE/index.html

DIGITIZED SPINDLE LEAD FOR MORE PRODUCTIVITY

Simply installation and robust operation

- Digital signal transfer
- Robust opposite EMV disturbances
- Transferring the motor drive parameters automated
- Integrated processing of analogous tool clamping status

Data record for preventive maintenance

- Condition Monitoring
- Data record on internal data server
- Analysis of the data
- Detection of trends and Overshoots of
 - temperature limits
- Reference to critical operating states
- Speed and torque

- - Operating hours counter •
- Counter of clamping cycles

Stateful maintenance

Digital identification •

- Recording of temperature
- Analysis of clamping times of the tool clamp system
- Supervision of the tool clamping process

INTERPRETATION OF OPERATION DATA

The following slides shows exemplary possible interpretations of operation data

SPINDLE WEAR PARTS AND POSSIBLE SPINDLE FAULTS

Analysis

- Operation times in reference to Speed and torque ranges
- Clamping times
- Number clamping cycles
- Trend analysis of motor and bearing temperature
- Temperature overshoots

can point out an existing process of an spindle failure or can give important information during a diagnostic of the causes of failure after a spindle fault.

Spindle Typ: 175442L	Time data expo	ort: 20161011, 14:00	Trend analysis	clamping time
Serial No.: 168		800	Reference	clamping tim
Production date: 27.03.2013		<u> 600</u>	Minimum:	46,808 ms
Operation hours			Average:	50,594 ms
Operation hour under control:	5020 h 36 min		Maximum:	71.875 ms
Operation hour under speed:	5010 h 22 min			, 2,0,0 1110
Number clamping cycles:	902520		Last 24 hours:	52.112 ms
Number fault clamping cycles:	65	6 4000 8000 12000 5	Last 10 days:	50.715 ms
		Speed [min-1] 18000	Last 100 days:	50.502 ms

	Bearing temperat	ture							
				+ + + + + + + + + + + + + + + + + + + +					
0	20151122-09-72	20151122-08-42	20151122-02-42	20161011.08.05	20161011-08-05	20161011.08.05	20161011.08.05	20161011.08.05	20161011.08.05
temperature [yy.mm.dd.hh.mm]	20131123.06.42	20131123.08.42	20131123.00.42	20101011.08.05	20101011.08.05	20101011.08.05	20101011.08.05	20101011.08.05	20101011.08.05
Last overshoot warning temperature [yy.mm.dd.hh.mm]	20151123:08:30	20151123:08:30	20151123:08:30	20161011:08:05	20161011:08:05	20161011:08:05	20161011:08:05	20161011:08:05	20161011:08:05
Data record [hh:mm]	06:00	07:00	08:00	09:00	10:00	11:00	12:00	13:00	14:00

Detection of events or changes of spindle condition

The analysis of torque (forces), speed, temperatures and operation time on the bearings influences the life time of the bearings and makes an estimate of the rest life time and therefore an maintenance planning possible.

SS

н

G

Übersicht Matrix Spannzustandsabfrage Temperaturen Ergebnisdaten tabellarisch Motorkennlinie tabellarisch Drehzahlschwellen Leistung S6-25% kW Leistung max_kW Laufzeitanteile in % von der Gesamtlaufzeit Laufzeitanteile in % von der Gesamtlaufzeit Anzahl 6 Drehmoment max. Nm Drehmoment S6-25% Nr 20 Drehzahlschwelle 1 10 1/min 10000 1/min Drehzahlschwelle 2 18 Drehzahlschwelle 3 20000 1/min 16 Drehzahlschwelle 4 30000 1/min 14 Drehzahlschwelle 5 35000 1/min **∑** 12 Drehzahlschwelle 6 40000 1/min **≌** 10 18 18 Drehmomentschwellen 15 15 Anzahl 6 12 09 Drehmomentschwelle 1 0 Nm 12 06 03 16.93 2 Nm Drehmomentschwelle 2 09 Drehmomentschwelle 3 3 Nm > 5 Nr> 5 Nm0 Drehmomentschwelle 4 4 Nm 06 5000 10000 0 15000 20000 25000 30000 35000 40000 Ξ Drehmomentschwelle 5 5 Nm > 3 Nm 03 Drehzahl [rnm] 20000 11min 10000 3 Nm Drehmomentschwelle 6 8 Nm > 2 Nm 00 06,97 30000 1/m > 2 Nm > 0 Nm 10000 11min 20000 11min 35000 11m Laufzeiten 10.1/1 30000 11min >0 Nm 35000 11 min Gesamtlaufzeit 107.07:47:22 dd.hh:mm:ss 40000 1/n 0000 1/ Zeit mit Beschleunigung > 14 1/s² 09:29:42 dd.hh:mm:ss Matrixfeld 1 2.03:15:36 dd.hh:mm:ss Matrixfeld 2 3.04:53:2 dd.hh:mm:ss Matrixfeld 3 5.08:09:0 dd.hh:mm:ss -Rotation X 150 Perspektive 0 Rotation X 180 Perspektive 0 * ÷ Matrixfeld 4 dd.hh:mm:ss * Rotation Y 10 Skalierung 55 -Rotation Y 40 ÷. Skalierung 55 Matrixfeld 5 7.11:24:36 dd.hh:mm:ss -Rotation Z 0 -Matrixfeld 6 00:00:0 dd.hh:mm:ss Rotation Z 0 Matrixfeld 7 17:56:28 dd.hh:mm:ss

Mainly operation at high speed \rightarrow Possible damage process at the grease lubricated bearings

www.weissgmbh.com | Folie-Nr. 14

EISS

Н

G

Μ

It can come to a fast ageing (bleeding) of the lubricating grease due to high temperatures at the bearing. In turn this can lead to a deficient lubrication of the bearings.

Possible necessary to doe's:

- > Changes at the processing process (cut strengths etc.)
- Optimization of the tools
- > Optimization of the spindle used (e.g. store cooling.)

≻ ...

Violations of the temperature warning limit \rightarrow possible failure process at the bearing

During a tool change the clamping time is found out. A increase of the clamping time can point to a wear at the clamping system. For a better detection of a clamping time increase the average clamping time of the former 24 hours, former 10 days and former 100 days will be analyzed.

Übersicht	Matrix	Spannzustandsabfrage	Temperaturer	n Ergebni	sdaten tabe	ellarisch
Spannerdia	agnose				<u>^</u>	
gültige Span	nzyklen		847514			
fehlerhafte S	pann-/Lösev	orgänge	174			
Drehzahlverl	etzungen (ge	spannt) ohne Werkzeug	0			
Spannvorgär	nge innerhalb	Toleranz (ohne Werkzeug)	841549			3
Spannvorgär	nge außerhal	b Toleranz (ohne Werkzeug)	5965			
gültige Span	nvorgänge (n	nit Werkzeug)	0			
Grenzwerte	B					
Maximalzeit z	zum Spanner	1	180000	μs		
Drehzahlgrenze Gelöst			1	1/min		2
Drehzahlgrenze Spannend			0	1/min	=	
Drehzahlgrenze Lösend aus Zustand 'Gespannt mit Werkzeug' 0 1/min						
Drehzahlgren	nze Lösend a	us Zustand 'Gespannt ohne W	/erkzeug' 0	1/min		
Drehzahlgrenze Gespannt mit Werkzeug 44000 1/min					[st]	
Drehzahlgrenze Spannend ohne Werkzeug			0	1/min		Ceit
Drehzahlgrenze Gespannt ohne Werkzeug			1000	1/min		IN 2
Referenzs	pannzeiten					
Minimalwert			145894	μs		
Maximalwert			170811	μs		
Mittelwert		157544	μs		1	
Ø Spannze	eiten					
Mittelwert be	i Betrieb (24	h)	314720	μs		
Mittelwert be	i Betrieb (10	Tage)	160938	μs		
Mittelwert be	i Betrieb (100) Tage)	159938	μs		
Referenzio	sezeiten					1

0 µs

Minimalwert

G

Fast increase of clamping time \rightarrow broken spring of the clamping system

EISS

Н

A tool clamping system contains a spring column, whose spring load keeps the tool in the tool interface of the spindle shaft. The spring column is executed for a defined number of clamping cycles and wears out about the number of clamping cycles.

The digitalized spindle evaluates the used clamping time of each clamping cycle. At a loss of the spring load or of an increase of friction this time will change.

For a better detection of a clamping time increase the average clamping time of the former 24 hours, former 10 days and former 100 days will be analysed.

Übersicht Matrix Spannzustandsabfrage Temperaturen Ergebnisdaten tabellarisch Spannerdiagnose 1578940 gültige Spannzyklen 243 fehlerhafte Spann-/Lösevorgänge 0 Drehzahlverletzungen (gespannt) ohne Werkzeug Spannvorgänge innerhalb Toleranz (ohne Werkzeug) 1573469 Spannvorgänge außerhalb Toleranz (ohne Werkzeug) 5471 1347810 gültige Spannvorgänge (mit Werkzeug) Grenzwerte Maximalzeit zum Spannen 210000 µs 1 1/min Drehzahlgrenze Gelöst 0 1/min Drehzahlgrenze Spannend Drehzahlgrenze Lösend aus Zustand 'Gespannt mit Werkzeug' 0 1/min Drehzahlgrenze Lösend aus Zustand 'Gespannt ohne Werkzeug' 0 1/min Drehzahlgrenze Gespannt mit Werkzeug 40000 1/min Drehzahlgrenze Spannend ohne Werkzeug 0 1/min 1000 1/min Drehzahlgrenze Gespannt ohne Werkzeug Referenzspannzeiten Minimalwert 154811 us 170280 µs Maximalwert Mittelwert 161841 us Ø Spannzeiten Mittelwert bei Betrieb (24 h) 248014 µs Mittelwert bei Betrieb (10 Tage) 224810 µs Mittelwert bei Betrieb (100 Tage) 180017 us Referenzlösezeiten Minimalwert 0 µs

Spannzeiten

Slowly increase of clamping time \rightarrow damage process or wear of clamping system parts

tabellarisch

Übersicht Matrix Spannzustandsabfrage Temperaturen Ergebnisdaten tabellarisch Drehzahlschwellen Anzahl 6 10 1/min Drehzahlschwelle 1 Drehzahlschwelle 2 2500 1/min Drehzahlschwelle 3 5000 1/min Drehzahlschwelle 4 7500 1/min Drehzahlschwelle 5 8750 1/min 10000 1/min Drehzahlschwelle 6 Drehmomentschwellen Anzahl 6 0 Nm Drehmomentschwelle 1 118 Nm Drehmomentschwelle 2 Drehmomentschwelle 3 235 Nm Drehmomentschwelle 4 353 Nm 470 Nm Drehmomentschwelle 5 Drehmomentschwelle 6 705 Nm Laufzeiten Gesamtlaufzeit 859.14:37:27 dd.hh:mm:ss Zeit mit Beschleunigung > 14 1/s² 09:29:42 dd.hh:mm:ss Matrixfeld 1 21.07:00:43 dd.hh:mm:ss Matrixfeld 2 4.22:50:2 dd.hh:mm:ss

24 18.12.0

11.21:12:58

24.18:12:0

9.21:40:48

dd.hh:mm:ss

dd.hh:mm:ss

dd.hh:mm:ss

dd.hh:mm:ss dd.hh:mm:ss

Matrixfeld 3

Matrixfeld 4

Matrixfeld 5

Matrixfeld 6

Matrixfeld 7

Perspektive 0

Skalierung 55

-

. •

-

Drehmoment max Nm Drehmoment S6-25% Nm 1000 900 800 700 600 500 400 300 200 20 100 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 Drehzahl [rpm] Conclusions can be drawn about the load of

G

Motorkennlinie

leistung max kW

Leistung S6-25% kW

EISS

Н

Conclusions can be drawn about the load of the spindle bearing and the thermal load of the motor from the running time of the spindle with respect to predefined speed ranges and torque ranges.

Great load in the area to nominal speed \rightarrow strong thermal use of the motor.